Mapping of quantitative trait Loci for grain iron and zinc concentration in diploid A genome wheat.
نویسندگان
چکیده
Micronutrients, especially iron (Fe) and zinc (Zn), are deficient in the diets of people in underdeveloped countries. Biofortification of food crops is the best approach for alleviating the micronutrient deficiencies. Identification of germplasm with high grain Fe and Zn and understanding the genetic basis of their accumulation are the prerequisites for manipulation of these micronutrients. Some wild relatives of wheat were found to have higher grain Fe and Zn concentrations compared with the cultivated bread wheat germplasm. One accession of Triticum boeoticum (pau5088) that had relatively higher grain Fe and Zn was crossed with Triticum monococcum (pau14087), and a recombinant inbred line (RIL) population generated from this cross was grown at 2 locations over 2 years. The grains of the RIL population were evaluated for Fe and Zn concentration using atomic absorption spectrophotometer. The grain Fe and Zn concentrations in the RIL population ranged from 17.8 to 69.7 and 19.9 to 64.2 mg/kg, respectively. A linkage map available for the population was used for mapping quantitative trait loci (QTL) for grain Fe and Zn accumulation. The QTL analysis led to identification of 2 QTL for grain Fe on chromosomes 2A and 7A and 1 QTL for grain Zn on chromosome 7A. The grain Fe QTL were mapped in marker interval Xwmc382-Xbarc124 and Xgwm473-Xbarc29, respectively, each explaining 12.6% and 11.7% of the total phenotypic variation and were designated as QFe.pau-2A and QFe.pau-7A. The QTL for grain Zn, which mapped in marker interval Xcfd31-Xcfa2049, was designated as QZn.pau-7A and explained 18.8% of the total phenotypic variation.
منابع مشابه
Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers
Mineral nutrient malnutrition, particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Biofortification of food crops is the best approach for conciliating the micronutrient deficiencies. Understanding the genetic basis of their accumulation is the preconditions for enhancing of these micronutrients. In our study, a mapping population of a set of 118 recombinant inbr...
متن کاملMolecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.)
Genomic regions responsible for accumulation of grain iron concentration (Fe), grain zinc concentration (Zn), grain protein content (PC) and thousand kernel weight (TKW) were investigated in 286 recombinant inbred lines (RILs) derived from a cross between an old Indian wheat variety WH542 and a synthetic derivative (Triticum dicoccon PI94624/Aegilops squarrosa [409]//BCN). RILs were grown in si...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملIdentification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines
Synthetic hexaploid wheat is an effective genetic resource for transferring agronomically important genes from Aegilops tauschii to common wheat. Wide variation in grain size and shape, one of the main targets for wheat breeding, has been observed among Ae. tauschii accessions. To identify the quantitative trait loci (QTLs) responsible for grain size and shape variation in the wheat D genome un...
متن کاملQuantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: Implications for intraspecific diversification and subspecies differentiation
Wild diploid wheat Aegilops tauschii, the D-genome progenitor of common wheat, carries large genetic variation in spikelet and grain morphology. Two differentiated subspecies of Ae. tauschii, subspecies tauschii and strangulata, have been traditionally defined based on differences in spikelet morphology. Here, we first assessed six spikelet shape-related traits among 199 Ae. tauschii accessions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of heredity
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2009